Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals
نویسندگان
چکیده
Conceptual models suggest that stability of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organomineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF) were analysed for OC, total nitrogen (TN), δ13C, and 114C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates) as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC) matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in 114C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the 114C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern 114C signatures and po i ive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and nutrient source for subsurface microorganisms throughout the profile. Declining specific mineralization rates with soil depth confirm greater stability of OC in subsoils across sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining specific mineralization rates with increasing contributions of HF-OC to bulk soil OC, and the low 114C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC suggest that occlusion of LFOC in aggregates also contributes to OC stability in subsoils. Overall, our results indicate that association with minerals is the most important factor in stabilization of OC in soils, irrespective of vegetation, soil type, and land use.
منابع مشابه
ارزیابی پایداری ساختمان خاک بهروش الک تر در برخی از مکانهای مرتعی استان اصفهان
Soil aggregate stability is considered as a key indicator of soil quality and health assessments in rangelands. Many factors and properties such as soil texture, organic carbon, calcium carbonate, sodium adsorption ratio, and electrical conductivity might affect soil aggregate stability. The effects of these factors on aggregate stability of 71 soil samples collected from 4 rangeland sites (2 i...
متن کاملتأثیر پوستههای بیولوژیکی و پلیمر پلیالکترولیت آنیونی بر برخی خصوصیات فیزیکی و شیمیایی یک خاک شنی
Organic substances produced by cyanobacteria and some polymeric compounds play a role in soil aggregation and increase soil structure stability in sandy soils. Effects of biological soil crusts and some polymeric compounds on some properties of a sandy soil were investigated in this research. Inoculation of three cyanobacterial treatments (Nostoc sp., Phormidium sp. and their combination) and f...
متن کاملStatistical and Geostatistical Appraisal of Spatial Variability of Aggregate Stability and Aggregate-Associated Organic Carbon Content on a Catchment Scale in a Semi-arid Region, Central Iran
In a semiarid region of central Iran, effects of parent materials, physiography and landscape position, land use, andmanagement practices on association of organic carbon with secondary (aggregates) particles and aggregate stability canhave important consequences in terms of carbon sequestration and budgeting, deciding on the proper land use strategy andsuitable soil conservation practices. It ...
متن کاملEffects of Land use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal va Bakhtiari Province- Iran)
Objective: Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure. So, this research has been done for achieving this purpose. Methods: This...
متن کاملEffects of Land Use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal Va Bakhtiari Province- Iran)
Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure.So, this research has been done for achieving this purpose. This area is arounding sa...
متن کامل